Terlaky, Tamás: A Novel Approach to Discrete Truss Design Problems – 2019. október 11.

A HU-MATHS-IN Stoyan Gisbert Szeminárium keretében a Lehigh University professzora, Terlaky Tamás tartott előadást.

Az előadás részletei a következők:

Előadás helyszíne: YouTube Live

Előadás időpontja: 2019. október 11. 15:30 óra

Előadás címe:
A Novel Approach to Discrete Truss Design Problems

Tamás Terlaky
Department of Industrial and Systems Engineering
Lehigh University, Bethlehem, PA 18034, USA

Discrete truss sizing problems are challenging to solve due to their combinatorial, non-linear, and non-convex nature. Consequently, truss sizing problems become unsolvable as the size of the truss grows. In this presentation, we focus on modeling and efficiently solving discrete truss sizing problems, where the cross-sectional areas of the bars take only discrete values. We consider various mathematical formulations with the objective to minimize the truss weight. The non-convex Euler buckling constraints and Hooke’s law are also considered.  We propose novel Mixed Integer Linear Optimization (MILO) reformulations of the non-convex models. The resulting MILO models, for large real world trusses, are not solvable with existing MILO solvers. We propose a novel solution methodology to solve the MILO models, and present encouraging computational results which demonstrate the power of the novel computational methodology.
Based on joint work with:
Mohammad Shahabsafa, Ali Mohammad-Nezhad, Ramin Fakhini, Luis Zuluaga
Dept. of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, USA
Sicheng He, John T. Hwang, Joaquim R. R. A. Martins
Dept. of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA
Research Supported by: HU-MATHS-IN – Intensification  of the activity of the Hungarian Industrial Innovation
Mathematical Service Network, project number: EFOP-3.6.2-16-2017-00015 and AFOSR grant number:  FA9550-15-1-0222