

The Industrial Problem

Every day the company has to detremine the routes of the vehicles that serve the customers with different fuel types. The goal is to find a route plan that minimizes the total distance run by the vehicles.

#### Széchenyi István University



Optimizing industrial problems by mathematical programming.

**MOL HUNGARY** 

MOL

Transporting fuel to hungarian clients by vehicles by road



#### **Challenges & Goals**

- To find the route of the vehicles for the next day.
- To guarantee that the solution satisfies special constraints.
- To minimize the total distance run by the vehicles.
- To test the solution method on problems of the company





Location of the orders for one shift in Hungary and in the Pécs region.

HU-MATHS-IN Hungarian Service Network for Mathematics in Industry and Innovations



#### Mathematical and computational methods and techniques applied

- The problem is modeled as a mixed integer linear programming (MILP) problem.
- To reduce the size complexity of the MILP models customers were clustered by machine learning.
- Parameters of the MILP model were calculated by scripting OpenStreetMap.
- Real world problems were solved by solving their MILP models with Express-MP.



Solution with 2 clusters for one shift in the Pécs region.



The MILP model is solved with 1,2,3,4 clusters and the changes of the solutions over time are compared.

#### **Results & Benefits to the company**

- Results
- A MILP based approach combined with clustering is developed.
- The new method is tested on problems of the company.
- Benefits
- Optimal solution were found in several shifts.
- In 10 cases our method gave better result than software the company uses.
- Our method gives a lower bound on the optimum.

| case                                                | 1.   | 2.   | 3.   | 4.   | 5.   | 6.   | 7.   | 8.   |
|-----------------------------------------------------|------|------|------|------|------|------|------|------|
| SZE-KPI                                             | 0.7  | 0.68 | 0.6  | 0.7  | 0.57 | 0.51 | 0.82 | 0.6  |
| MOL-KPI                                             | 0.66 | 0.73 | 0.68 | 0.6  | 0.53 | 0.47 | 0.74 | 0.54 |
| case                                                | 9.   | 10.  | 11.  | 12.  | 13.  | 14.  | 15.  |      |
| SZE-KPI                                             | 0.68 | 0.48 | 0.38 | 0.55 | 0.57 | 0.86 | 0.52 |      |
| MOL-KPI                                             | 0.58 | 0.55 | 0.5  | 0.45 | 0.59 | 0.67 | 0.49 |      |
| Comparing the results of the new method with        |      |      |      |      |      |      |      |      |
| results of the company (KPI: transported litre/km). |      |      |      |      |      |      |      |      |

The MILP based method can be improved by clustering the active clients.